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Introduction 

The project was initially funded for one year (for $100,764) to investigate the potential of 
particulate reinforced metals for aeropropulsion applications and to generate fatigue results that 
quantify the mean stress effect for a titanium alloy matrix material (TIMETAL 21 S). The project 
was continued for a second year (for $85,000) to more closely investigate cyclic deformation, 
especially ratcheting, of the titanium alloy matrix at elevated temperature. Equipment was 
purchased (for $19,000) to make the experimental program feasible; this equipment included an 
extensometer calibrator and a multi-channel signal conditioning amplifier. The project was 
continued for a third year ($50,000) to conduct cyclic relaxation experiments aimed at validating 
the elastic-viscoelastic-viscoplastic model that NASA GRC had developed for the titanium alloy. 
Finally, a one-year no cost extension was granted to enable continued analysis of the 
experimental results and model comparisons. 

0 A detailed literature review of particulate reinforced metals including constituents, 
processing, properties, applications, improvements, and a cryogenic application was 
compiled and presented as a powerpoint presentation [ 13. In addition, a particle 
reinforced aluminum for a cryogenic application was investigated, but matgal  was not 
procured. 

For stress-controlled fatigue tests on TIMETAL 2 1 S the S-N curve was found to be well 
represented by a power law having a temperature-dependent coefficient and a temperature 
independent exponent. A tensile mean stress caused strain ratcheting that does not shake 
down. The Goodman approach was found to be reasonably successfbl in correlating 
mean stress to low cycle fatigue life given the limited amount of data [2]. 

The effect that gripping a sample with water-cooled wedge grips at different locations has 
on the temperature distribution throughout the specimen was quantified. This enabled 
better control of the temperature distribution and eased the test setup process [3]. 

A labview control and data acquisition program was developed for conducting cyclic tests 
in three different control modes: strain control with strain limits, stress control with 
stress limits, and strain control with stress limits [3]. 

Experimental results for TIMETAL 21s confirmed and quantified the strain rate effect at 
650 "C as well as quantified the associated effects that different control modes have on 
the shape of hysteresis loops and ratcheting behavior. The accumulated strain (ratchet 
strain) for cyclic loading with stress limits plotted as a function of time resembles a 
classic creep curve having three distinct regions. [3-51 

One-of-a-kind cyclic experiments were conducted on TIMETAL 21 S to validate the 
GVIPS model of Saleeb and Arnold [ 6 ] .  Each cycle was interrupted with numerous 
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strain-holds to initiate stress relaxation. These hold times were designed to take place in 
all four quadrants of the stress-strain plane to enable assessment of the functional form of 
the potentials used in the GVIPS model. A very clear path-dependence was reported [4- 
51. 

0 All test data on TIMETAL 21 S were analyzed with CES software and the results were 
supplied to NASA GRC for inclusion in their database. We also provided raw test data 
for NASA GRC to use for characterizing the GVIPS model with the COMPARE 
optimization code. [7] 

0 Flow surfaces for fibrous SiCRIMETAL 21 S laminates were predicted using GMC and 
HFGMC micromechanical models. Flow surfaces at the laminate, ply, and matrix subcell 
level were predicted using GMC for [0/90],, [&45],, [&30],, [0/*45/90],, [0/&60],, and [O] 
laminates in the axial-transverse and axial-shear stress planes. GMC and HFGMC 
predictions for unidirectional composites were compared, which showed that HFGMC 
admits a shear-normal coupling that is unable to occur in GMC. The significance of this 
is that it reiterates that 5,ne mic:cstmc~xa! discretization with HFGhfC i s  memifiefill 
while it is not for GMC. [8] 

U 

0 The MAC/GMC micromechanics based computer code was also used to identie load 
paths in the axial-shear stress plane that will provide the most meaningful 
characterization results for an alumina fiber reinforced aluminum composite. This 
analytical study was undertaken to guide an experimental program on thin-walled 
composite tubes. [9] 

Time-dependent strength differential effect experiments were conducted on Inconel 7 18 
at 650 “C. These experiments demonstrate that the tension-compression asymmetry is 
significant. It could be especially important for metal forming operations where the 
accuracy of elastic springback predictions is critical. [ 101 
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Future Work Suggestions 

The experimental investigation of TIMETAL 21 S was undertaken in support of constitutive 
modeling of the titanium alloy for use as the matrix in a composite. The next step is to conduct a 
micromechanical modeling study of a composite material with the objective of identifLing load 
paths that will provide a rigorous test of the constitutive model. The experiments themselves and 
the results will be very interesting because the elastic fibers will provide constraint to the time- 
dependent deformation of the matrix. Uniaxial tests on unidirectional specimens having different 
orientations should be conducted first, followed by nonproportional axial-torsion tests to assess 
the multiaxial capabilities of the constitutive model (which go back to the functional form of the 
dissipation and free energy potentials) to predict strain ratcheting. 

This project reports strain ratcheting during high temperature tests that resembles a creep curve. 
The GVIPS unified viscoplasticity model is capable of simulating these ratchet strains. There are 
many applications at moderate or room temperature where strain ratcheting occurs from a 
mechanism that is not creep related. Is the GVIPS model accurate for these applications? It 
should be, because in the quasistatic limit viscoplastic response approaches time-independent 
plastic response. Since the structure of strain ratcheting-capable plasticity models is quite 
different than the GVIPS structure it would be interesting to determine GVIPS capability in this 
area. In the literature there are ratcheting databases for materials such as 1070 steel. We could 
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characterize the GVPS model for one of these materials and then compare model predictions 
with ratcheting data in the literature. 

While the COMPARE program optimizes the fit of material parameters to the characterization 
data, there is still the nagging question of what data should be used for characterization. This is a 
major question that limits usage of sophisticated constitutive models because of the relatively 
large number of material parameters required for the model to accurately represent deformation 
mechanisms active over short and long time scales, multiaxial loading, and a wide range of 
temperatures. There are two major ‘data content’ questions: (1) what type of data is optimal and 
(2) how much data is necessary? The ‘type of data’ question refers to simple experiments such 
as relaxation, creep, monotonic tests at different strain rates, stepped relaxation, stepped creep, or 
more complex experiments that activate a variety of mechanisms and therefore require less 
specimens. The ‘how much data’ question refers to specimen-to-specimen variation, the number 
of stress levels for creep testing, relaxation hold times, etc., and most importantly, the time, 
loading rate, and strain range domains of interest. Answering these questions is critical to the 
widespread use of this class of constitutive models. 
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